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The Cometary Cloud in the Solar System and the 
R sibois-Prigogine Singular Invariants of Motion 

T. Y. Petrosky ~ 

Received March 2, 1987 

A relation between nonintegrability of nonlinear dynamical systems with a con- 
tinuous Fourier spectrum and irreversibility is investigated in terms of the Lie- 
algebraic formalism. R+sibois and Prigogine's singular invariants of motion play 
an essential role. As an application of the formalism, we solve the restricted 
three-body problem for the case of nearly parabolic motion of the third body. 
This gives a model of the motion of a comet in the solar system. The results 
indicate that there is (deterministic) chaos in the motion of a comet in a nearly 
parabolic orbit. A possible physical implication of the chaotic motion is the 
existence of a cometary cloud surrounding the solar system. The theoretical 
results are compared with numerical results, and show good agreement. 
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1. I N T R O D U C T I O N  

Among  the many  fruitful cont r ibut ions  of I. Prigogine to science, 1 am 

especially interested in those aspects of his work related to the problem of 
irreversibility of large systems and its relat ion to the fundamenta l  structure 
of dynamics.  (~'2~ The remarkable  progress in non l inea r  dynamics  over the 

last decades reveals more and more the impor tance  of his basic concepts in 

kinetic theory, such as the dissipativity condi t ion  and the singular invar iant  
of motion.  ~3~ 

In  this article, I will show that these basic concepts lead to an exten- 
sion of Poincard 's  theorem concerning integrabil i ty for non l inear  dynamical  
systems with con t inuous  Four ier  spectrum and to a na tura l  classification of 
these systems. 
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I then apply the singular invariant to solve a genuine problem of 
classical mechanics, the restricted three-body problem, for the case of 
nearly parabolic motion of the third body. We may regard the two 
primaries of the problem as the sun and Jupiter, and the third body as a 
comet. In this example, I will show how the idea of the singular invariant 
solves the difficulty of the "small denominator" due to the resonance effect. 
This difficulty in nonintegrable systems has been of central interest not only 
in our specific problem, but in all of nonlinear dynamics since the classical 
work of Poincar6J 4 9) My solution of the restricted three-body problem 
shows that the motion of a comet in nearly parabolic motion is chaotic 
even though it is deterministic. The existence of a chaotic region in orbital 
space suggests the existence of a cometary cloud in the solar system. This 
cloud might be the Oort  cloud that many astronomers think is the source 
of comets, (~~ or some secondary cloud generated by the Oort cloud. 

2. S I N G U L A R  I N V A R I A N T S  A N D  INTEGRABIL ITY  

We consider a system with N degrees of freedom, the Hamiltonian of 
which is given by the Fourier series 

H(q, p,/~) = Ho(p) + pV(q, p) 

= Ho(p)+ # Ak ~ Vk(p) exp(ik" q) (2.1) 
k 

Here, q-= (ql-"qJv),  etc., Ak=-Ak~ ,..AkN, ki=niAki with integer hi, and 
k.q=_klq~+..-+k~vq~v. The constant # is a small perturbation 
parameter. In other words, the perturbation term depends periodically on 
qi with period 2~/Aki for i =  1 ..... N. The discreteness Ak~ of the Fourier 
spectrum generally depends on the momentum p. Some of the Fourier 
spectra can be continuous as Ak~ -* 0 for certain values of p. I am especially 
interested in this limiting case. 

With a systematic use of the Lie-algebraic formalism with the 
canonical transformation operator UF, we can construct a formal solution 
of the equation of motion to any order of the perturbation series. (~'~2~ This 
operator is defined as a solution of the operator equation 

OUF 
- - i - -~ ' -  ~- L F U  F (2.2) 

with the boundary condition UF = 1 at # = 0 .  Here L F  = i{F,-} is a Lie 
derivative generated by a generating function F(q, p, #) and { , } is the 
Poisson bracket with respect to the canonical variables (q,p). The 
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canonical transformation is given by q ; =  UFlqi and p ; =  Uvlpi,  where 
(q', p') are new canonical variables and the inverse operator Uy 1 satisfies 
the equation i { U i l / ~ #  = UF1LF with the condition UF 1 = 1 at # = 0. 

Suppose that we can find a suitable generating function F such that 
the operator UF makes the Hamiltonian cyclic in the form 

UFH(q , p, #) =/4(p, #) (2.3) 

then the new momenta Pi on the right-hand side of this expression are 
invariants of the motion. In the following context we will show with a 
perturbation analysis that these new momenta reduce to R6sibois and 
Prigogine's singular invariants in the limiting case of the continuous 
Fourier spectrum. 

We expand the generating function, the transformation operator, and 
the new Hamiltonian in power series of #, 

,u H,, (2.4) 
n=0 17=0 n= 0  

Then Eq. (2.2) gives a recursive relation with Uo = 1 

g~ = -  iLn_m Vm (2.5) 
gtm= 0 

where L,, =LF,,. Combining Eq. (2.5) with Eq. (2.3) gives 

Ho- 
iL l H o + V= 1~tl (2.6) 

�89 2 + iLz] H o + iL l V= ffI 2 

and so on. By solving Eq. (2.6) step by step, we obtain F,  for n = 1, 2, 3,.... 
This gives us the desired UF in Eq. (2.3). 

Using a Fourier analysis, we have the first-order approximation, for 
example, /~ (p )  = AkVo(p) and 

gl(q, p) = Ak ~ '  - i V k ( p )  exp(ik -q) (2.7) 
k k'fLO 

here the prime on the summation sign stands for k # 0, and oJ _= ~Ho/~? p. 
This solution is, however, still formal and has a possibility of 

divergence in the general case because Eq. (2.7) includes the "small 
denominator" k-co. Note that if we consider the case of the continuous 
limit Ak ~ O, then Eq. (2.7) reduces to the Fourier integral. The resulting 
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integration is a Cauchy integral evaluated on the real axis of k~. Hence, the 
integral is well-defined and has a finite discontinuity on the real axis for an 
appropriate potential such as the example of the restricted three-body 
problem discussed later. 

The new momentum p; is thus given for the continuous limit by 

~, _k, Vk(p_ ) exp(ik- q) + 0(#  2) P ~ = P ~ + # A k  ~ k . ~ _ i e  (2.8) 

where we have used the conventional notation Akin,  k, for the integral 
notation f + ~  dki for the continuous Fourier component. Here a is a 
positive infinitesimal and we have chosen a branch of the analytic 
continuation that is consistent with the boundary condition such that the 
old momentum p(t) reduces to the new momentum p' (which is constant in 
time) in the limit of t-~ -oo.  

The new momentum does not reduce to a collisional invariant (1'13) 
such as the unperturbed Hamiltonian in the limit of/x ~ 0. Hence, our new 
momentum is just the singular invariant introduced by R&ibois and 
Prigogine. (31 The important consequence of the singular invariant is that 
we can evaluate the resonance effect to construct the solution for the 
equation of motion. [Note that the residue of the integration in Eq. (2.8) is 
evaluated just at the resonance point k ' m  =0.1 This raises the hope of 
avoiding Poincar6's catastrophe ~1:) for the perturbation analysis in non- 
linear dynamical systems with the continuous Fourier spectrum. 

I have recently investigated more closely the relation between the Lie- 
algebraic formalism and Poincar6's theorem for the case of continuous 
Fourier spectrum, Here I summarize the results (detailed discussion can be 
found in Ref. 14): In the perturbation expansion of the transformation 
operator (2.5) there appear divergent terms of the form 

t)(+i~)/~ (~--* 0 + )  (2.9) 

Here, ~ is the collision operator, which is a basic quantity in modern 
kinetic theory, (2'15/ and is given by 

l 
O(z) = ~ 2 P L v ~  L v P  + 0(# 3) (2.10) 

LHo -- z 

where LH0 and L v are the Lie derivatives generated by H0 and V, respec- 
tively, and P is the projection operator, which projects out the q-average 
components, i.e., the fk(P) component with k = 0 in the Fourier represen- 
tation, of any phase function f (q,  p). As a consequence, we encounter 
Poincar6's results, even in the case of the continuous spectrum: whenever 
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the collision operator has to be retained, the dynamical system cannot be 
integrable. Except for trivial invariants of motion, such as the total 
Hamiltonian, general invariants can only be constructed if the collision 
operator 0 ( +  ie) vanishes. 

If we recall the fact that the existence of the collision operator gives a 
criterion of the existence of an irreversible process, (~) the above result leads 
to a remarkable relation between the integrability and the irreversibility of 
a dynamical system: the irreversible behavior of the system is a direct 
consequence of Poincar6's catastrophe. 

A typical example of the case where ~,(+ie) does not vanish is a 
gaseous system. In this case a dominant term of the collision operator is 
proportional to a small factor A k ~  1/s and large factor N with 
N/ f~  = finite for the thermodynamic limit, where ~ is the volume of the 
system and N is the number of particles. (1) 

On the other hand, a typical example of the case where ~,(+ie) 
vanishes is a restricted three-body problem with nearly parabolic orbit for 
the third body, which we discuss in the next section. In this case the 
collision operator is proportional to a vanishing factor A k  ~ 1/7, where T 
is the period of an elliptic motion and T ~  ov in the parabolic limit, while 
there is no large factor such as N in the case of the gaseous system men- 
tioned above. Therefore, in this case we can apply the perturbation analysis 
to construct the solution of the motion. 

3. A P P L I C A T I O N :  THE  C O M E T A R Y  C L O U D  

We apply the above argument to construct a solution of the two- 
dimensional circular restricted problem in the case of nearly parabolic 
motion of the third body. (16~ We may regard the two primaries as the sun 
and Jupiter, and the third body as a comet. 

To describe the motion, we use the following dimensionless units: the 
distance between the two primaries, their total mass, and their angular 
velocity are all normalized to 1. By using canonical variables (g, G) and 
(Q, P) which are closely related to Delaunay's variables, (s'17~ we can write 
Hamiltonian for the direct motion of the comet in the synodic coordinate 
system as 

H=�89 (3.1) 
where 

Here, g is the argument of the perihelion measured in the rotating system, 
G is the angular momentum, and P =- l /a ,  where a is the semimajor axis of 
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the conic mot ion  in the two-body  problem;  P > 0, P = 0, and P < 0 corres- 
pond  to hyperbolic,  parabolic ,  and elliptic mot ion ,  respectively; and Q is a 
canonical  conjugate  coordinate  of P. Jupi ter 's  mass  /~ is given by /~ = 
0.95 X 1 0  - 3  in our  units. The  distances r~ and r2 are given by the synodic 
polar  coordinate  system (r, 0) measured  f rom the center of mass  of the two 
primaries  such that  

rl = ( r  2 - 2/~r cos 0 + #2)1/2 
(3.3) 

r 2 = [ r  2 --}- 2(1 -- #)r  cos 0 + (1 - #)2] 1/2 

The caonical  t ransformat ion  between our  canonical  variables and the polar  
coordinate  system (r, 0, Pr, Po) is given by 

G 2 2 \ 1/2 
P r :  H- - -  - ~ - + - + P / /  , pa=G 

r 

(3.4) 
Q = ~ (e sinh u - u), g = 0 - arccos -e - 1 

with u - [2(e - 1 )] ~/2 z. Here  e - (1 + PG2) 1/2 is the eccentricity for the case 
of the two-body  problem. The auxiliary variables u and r are related to r 
through the relation r = a(e cosh u - 1). 

In contras t  to Delaunay ' s  variables,  our  variables (Q, g, P, G) are 
well-defined and cont inuous  in the limiting case of the parabol ic  mot ion,  
i.e., IP[ ~ 0  and e ~  1 with q=-a(e-1)=finite, where q is the perihelion 
distance of the comet  for tz = 0. In this limit, we have the simple relations 

Q=(q3/2)1/2 (-c + r 3 / 3 ) ,  r = q ( 1  + z  2) (3.5) 

If we restrict ourselves to the case of q > 1, we can expand the poten-  
tial (3.2) in terms of Legendre polynomials .  Keeping  the lowest order  terms 
in #, we obtain  

~ v = 4 - ~ ?  1 + 1-~r~+ . . . .  1 + 1-~r~+ -.-  cos  0 

(3+?~ ) + ~ \  16r~+ --. cos 2 0 +  -.. (3.6) 

Substi tut ing Eq. (3.5) for nearly parabol ic  mot ion  in Eq. (3.6) and 
representing the function of Q in Fourier  expansion,  we obtain  

#V=kzAkl}"[v~ + ~ (v~s (3.7) 
k 1 j ~ 1 
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where k~ = n  Ak~ with integer n. For the elliptic case, Ak  1 = 2 ( - P )  3/2 and 
the Fourier spectrum is discrete. For the parabolic and hyperbolic cases 
Akl  ---, 0 and the spectrum is continuous. 

The explicit forms of the Fourier components Vk~,~2 can be calculated 
by using (3.5) in nearly parabolic orbits. The resulting expressions are an 
intricate series of modified Bessel function and incomplete gamma function. 
A detailed calculation of the Fourier components is found in Ref. 18. The 
result is as follows: The solution of P(t)  to the first-order approximation is 

P(t)  = UFP 0 = Po -- # dkl ei[kl Q(t) + k2 g(t)] 
k2= --1 klco~ + k2co2 - ia 

(3.s) 

where Q ( t ) = c o ~ ( t - t o )  and g ( t ) = c o z ( t - t o ) + g o ,  with co1=1/2 and 
co x = -1 .  For sufficiently large positive time, we can evaluate the integral in 
k~ in Eq. (3.8) in such a way that P(t)  approaches asymptotically to Pas, 
where 

Pas = Po  -t- 2/~ ~ Ai sin Jgo (3.9) 

where Aj = _ 27rj(v~.-ivy!)), and the angle go is the phase angle of Jupiter 
measured from the direction of the unperturbed perihelion of the comet 
when the comet passes the perihelion. Note that P(t)  asymptotically does 
not depend on time. For moderately large q, we obtain 

A j = [ 2 1 / 4 x / ~  q ' / 4 + O ( q - J ) ] e x p ( - - 4 q 3 / 2 / 3 x / 2 )  (3.10) 

and A / ~ e x p ( - 4 j q 3 / 2 / 3 ~ ) ~ l  for j~>2. Hence, we may neglect the 
contribution from terms with j~> 2 in Eq. (3.9). 

Figure 1 shows the q dependence of the amplitude of (Pa~-P0)/2, 
which is estimated theoretically by /xA 1 and also evaluated numerically 
based upon the Runge-Kutta integration method performed with the 
original rectangular coordinates. 2 In order to improve the precision of the 
numerical integration, I amplified the effect of Jupiter by using /z= 10 -2 
instead of # = 0.95 x 10 -3. The figure shows good agreement between the 
theory and the numerical simulation. 

So far we have studied a single scattering process of a comet by the 
effect of the sun and Jupiter. We now study multiple scattering process as 
applied to the capture of comets in the solar system. The orbit of the comet 

2 The numerical simulation was done by Dr, R. Broucke. 
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Fig. 1. Dependence of (Pas-P0)/2 on the perihelion distance q (# = 0.01 ). (--) Theoretical 
result. (0) Numerical result. 

is elliptic if the asymptotic value of Pas is negative. Its period is given 
approximately by 2 n / ( - P )  3/2 in accordance with Kepler's third law. 
Therefore, we can calculate the new phase angle of Jupiter when the comet 
once again passes the perihelion. At each passage, the perihelion distance q 
also changes, because of the relation G =  [q(e+ 1)]1/2- ~ (2q) 1/2. By the 
same operation used in deriving Eq. (3.9), it is easy to see that q changes in 
each scattering process with order of # A~(qo ), where q0 is the initial value 
of q. Therefore, in accordance with our approximation of neglecting the 
effects of #Aj forj>~ 2, we can set # A~(q) equal to its initial value # Al(qo) 
for each passage. Combining this argument with Kepler's third law, we 
obtain a canonical (area-preserving) map describing multiple scattering 
process of the comet, which I call the "Keplerian map," 

P,,+ I = Pn + 2# A1(qo) sin g .  

gn+ l = g n -  2rc/(-  Pn+ l)3/2; (rood 27r) 
(3.11) 

For a given initial condition (go, Po), if, for a certain value of n, P,, 
becomes positive, the comet escapes from the solar system. Figure 2 shows 
a distribution of points in the (g, P) space obtained by iterations of the 
Keplerian map for several initial conditions. This figure shows that there 
are chaotic motions in the neighborhood of the parabolic orbits. In the P 
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Fig. 2. A distribution of points in the (g, P) space obtained by iteration of the Keplerian 
map, Eq. (4.I), for j~A~ = 0.01. The calculations were performed with the accuracy of 16 digits. 
P* is the lower limit of the chaotic motion, related to the breakdown ~f the invariant curve in 
the KAM theory. 

space the chaotic region is confined from below by the KAM torus. ~7-9'~% 
There are several regular regions around the elliptic fixed points, and we 
see the formation of island structure in the regular regions, inside the 
chaotic region. 

The threshold value of the chaotic region in P space is estimated by 
reducing the Keplerian map to the "standard map" around fixed solutions 
of Eq. (3.ll). I~9) This gives P * =  -(6~r/~ A t/Kc) ~/5, where K~ is a critical 
value of the parameter in the standard map given by Kc=0.9716J 2~ The 
theoretical value P* is indicated in Fig. 2, 

From this figure~ it is clear that a simple application of the stochastic 
description such as the diffusion equation to describe the cometary motion, 
which has been done by Lyttleton and Hammersley ~2j) (see also Ref. 10), 
might fail near the boundary region of the chaotic motion. 

The theoretical value of P* gives us the order of the scale of the 
semimajor axis a* = 1/P* for the innermost orbit in the chaotic region. For 
example, we have a* ~ 104 A.U. for q = 6. 

Suppose that the points in Fig. 2 indicate an ensemble of the comets 
instead of a history of a time sequence of a few comets. Then, this figure 
suggests the existence of a cometary cloud such as the Oort cloud that is 
thought of as the source of comets/~~ I hope this formulation reveals a 
detailed dynamical structure of the cometary cloud. 
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